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Abstract. The non-leptonic hyperon decays are analyzed up to one-loop order including all counterterms
in the framework of heavy baryon chiral perturbation theory. We use the exchange of the spin- 3

2 decuplet
resonances as an indication of which low-energy constants contribute significantly to these investigated
processes. We choose four independent decay amplitudes that are not related by isospin relations in order
to perform a fit for the pertinent low-energy constants and find a satisfactory fit both for s- and p-waves.
The chiral corrections to the lowest order forms for the s-waves are moderate whereas there are significant
modifications of the p-wave amplitudes.

1 Introduction

For three decades non-leptonic hyperon decays have been
examined using effective field theories [1]. There exist seven
such transitions: Σ+ → n π+ , Σ+ → p π0 , Σ− → n π− ,
Λ → p π− , Λ → n π0 , Ξ− → Λ π− andΞ0 → Λ π0, and
the matrix elements of these decays can be expressed in
terms of parity-violating and parity-conserving amplitudes-
s- and p-waves, respectively. The weak ∆S = 1 Hamil-
tonian transforms under SU(3) × SU(3) as (8L, 1R) ⊕
(27L, 1R) and, experimentally, the octet piece dominates
by a factor of twenty or so. Therefore, we shall neglect the
27-plet contribution in what follows.

Chiral perturbation theory is a systematic expansion
in terms of small four-momenta p and the current masses
mq of the light quarks, q = u, d, s. In the case of non-
leptonic hyperon decays lowest order chiral perturbation
theory makes definite predictions for the decay ampli-
tudes in terms of just two weak couplings – the famil-
iar f, d terms which parametrize the coupling of the octet
weak spurion to B̄′B pairs. These terms are examples of
so-called low-energy constants (LECs), i.e. coupling con-
stants not fixed by chiral symmetry. It has long been
known that if one employs values for the LECs which pro-
vide a good fit to the s-waves then a poor fit is given for
the p-waves. On the other hand, a good p-wave representa-
tion yields a poor s-wave fit [2]. In the paper of Bijnens et
al. [3], a first attempt was made in calculating the leading
chiral corrections to these decays. However, the resulting
s-wave predictions no longer agreed with the data, and for
the p-waves corrections were even larger.

More recently, Jenkins reinvestigated this topic within
the heavy baryon formulation, including the spin-3

2 de-
cuplet in the effective theory [4]. But as in [3] no coun-
terterms were included – only the leading non-analytic,
i.e. “leading log”, pieces from the loops were retained and
mu = md = 0 was assumed. She found large cancella-

tions between the octet and decuplet pieces in the loops,
and therefore that the overall leading logarithmic chiral
correction is reduced. For the s-waves, good agreement
between theory and experiment was restored. However, in
the case of the p-waves, the chiral corrections did not lead
to a satisfactory description of the data. Indeed the low-
est order p-wave contribution consists of two baryon pole
terms which tend to cancel to a large extent, enhancing
the loop corrections. In the p-waves then, one finds sig-
nificant SU(3) violation but not necessarily a breakdown
of the chiral expansion. In order to obtain better under-
standing for the p-waves one should account for all terms
at one loop order, not just the leading log corrections and
that is the goal of our work.

This paper is organized as follows. In Sect. 2 we write
down the effective meson-baryon Lagrangian necessary to
investigate the non-leptonic hyperon decays, and spin-3

2
decuplet resonance exchange is used as an indication of
which terms of this Lagrangian contribute significantly to
the decay amplitudes. There remain ten terms. Four of
these higher order terms can be absorbed by the lowest
order terms since they amount to quark mass renormal-
izations of the latter. We are not able to get a satisfac-
tory fit for the decay amplitudes by neglecting all other
LECs in the Lagrangian. In [5] a rough estimate of the
LECs of the weak baryon Lagrangian of order O(p) has
been given using the weak deformation model which lead
to significant contributions to the p-waves. We will take
these LECs into account leading to a total number of ten
coupling constants. In Sect. 3 the theoretical calculation
of the decay amplitudes is presented. Section 4 deals with
the comparison of this computation with experiment. A
least-squares fit for the parameters is performed for the
case of estimating the LECs solely by means of resonance
saturation yielding a very unsatisfactory fit both for s- and
p-waves. However, assuming non–vanishing counterterms
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of order O(p) in the p-wave sector, we achieve a much
better fit for the decay amplitudes. There remain, how-
ever, significant higher order corrections for the p-waves.
A short summary is given in Sect. 5. The complete effec-
tive Lagrangian, some technicalities and the Z-factors are
relegated to the appendices.

2 Effective Lagrangian

We perform our calculations using an effective Lagrangian
within the heavy baryon formalism. To this end, one writes
down the most general relativistic Lagrangian which is in-
variant under chiral and CPS transformations, the con-
struction principles of which are outlined in Appendix A.
Imposing invariance of the Lagrangian under the trans-
formation S which interchanges down and strange quarks
in the Lagrangian one can further reduce the number of
counterterms. We will work in the CP limit so that all
LECs are real. This Lagrangian is then reduced to the
heavy fermion limit by the use of path integral methods,
which deliver the relativistic corrections as 1/

◦
m terms in

higher orders. The baryons are described by a four-velocity
vµ and a consistent chiral counting scheme emerges, i.e.
a one-to-one correspondence between the Goldstone bo-
son loops and the expansion in small momenta and quark
masses. However, we will not present here the relativistic
Lagrangian explicitly but rather quote only the form of the
heavy baryon limit. Due to its length the entire expression
of the heavy fermion limit is relegated to Appendix B. In
the present section we will refer only to the counterterms
which are needed for our calculation. The reason for the
choice of these terms will become clear below when we
estimate the LECs by means of the resonance saturation
principle.

The pseudoscalar Goldstone fields (φ = π, K, η) are
collected in the 3 × 3 unimodular, unitary matrix U(x),

U(φ) = u2(φ) = exp{2iφ/
◦
F} (1)

with
◦
F being the pseudoscalar decay constant (in the chi-

ral limit), and

φ =
1√
2




1√
2
π0 + 1√

6
η π+ K+

π− − 1√
2
π0 + 1√

6
η K0

K− K̄0 − 2√
6
η


 .(2)

Under SU(3)L×SU(3)R, U(x) transforms as U → U ′ =
LUR†, with L, R ∈ SU(3)L,R. The matrix B denotes the
baryon octet,

B =




1√
2
Σ0 + 1√

6
Λ Σ+ p

Σ− − 1√
2
Σ0 + 1√

6
Λ n

Ξ− Ξ0 − 2√
6
Λ


 , (3)

which under SU(3)L × SU(3)R transforms as any matter
field,

B → B′ = K B K† , (4)

with K(U, L, R) the compensator field representing an el-
ement of the conserved subgroup SU(3)V . To the order we
are working the effective Lagrangian has the form

Leff = LφB + LW
φB + Lφ + LW

φ , (5)

where Lφ = L(2)
φ + L(4)

φ is the usual (strong and electro-
magnetic) mesonic Lagrangian up to fourth chiral order,
see e.g. [6]1. From the weak mesonic Lagrangian only the
term

LW
φ =

◦
F

2

4
hπ tr

(
h+uµuµ

)
(6)

contributes to the order we are working. Here, we have
defined

h+ = u†hu + u†h†u , (7)

with ha
b = δa

2δ3
b being the weak transition matrix. Note

that h+ transforms as a matter field. The weak coupling
hπ is well-determined from weak kaon decays – hπ = 3.2×
10−7.

For the strong meson-baryon Lagrangian LφB one
writes

LφB = L(1)
φB + L(2)

φB , (8)

where the superscript denotes the chiral order and

L(1)
φB = i tr

(
B̄[v · D, B]

)
+ D tr

(
B̄Sµ{uµ, B}

)
+F tr

(
B̄Sµ[uµ, B]

)
(9)

L(2)
φB = L(2,rc)

φB

= − 1

2
◦
m

tr
(
B̄[Dµ, [Dµ, B]]

)

+
1

2
◦
m

tr
(
B̄[v · D, [v · D, B]]

)
(10)

with 2Sµ = iγ5σµνvν denoting the Pauli–Lubanski spin
vector. For L(3)

φB we only consider the part which renor-
malizes the Z-factors.

L(3)
φB = ix1tr

(
B̄{χ+, [v · D, B]}

)
+ ix2tr

(
B̄[χ+, [v · D, B]]

)
+ix3tr

(
B̄[v · D, B]

)
tr
(
χ+

)
(11)

We do not include the part of L(3)
φB which renormalizes

the axial-vector couplings since already a simple lowest or-
der fit for those yielding D ' 3/4 and F ' 1/4, which are
the values in the SU(6) limit, gives a very satisfactory de-
scription. There do not appear additional unknown LECs.

Having dealt with its strong counterpart, the weak
meson-baryon Lagrangian LW

φB reads

LW
φB = LW (0)

φB + LW (1)
φB + LW (2)

φB . (12)

1 The fourth order is needed for the Z-factor of the pion
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The form of the lowest order Lagrangian is

LW (0)
φB = d tr

(
B̄{h+, B}

)
+ f tr

(
B̄[h+, B]

)
, (13)

and these are the only terms considered in previous calcu-
lations, [1–4]. To next order there is no contribution if we
resort to resonance exchange only. In order to achieve a
much better fit to the decay amplitudes, however, we have
to include further counterterms, which by standard argu-
ments should be numerically more significant the lower
the chiral order. Thus we take the counterterms in LW (1)

φB

into account, see Appendix B. This is also indicated in [5]
where a rough estimate of the LECs of the weak baryon
Lagrangian of order O(p) has been given using the weak
deformation model and the author comes to the conclusion
that one cannot understand nonleptonic hyperon decays
without such LECs. There are two types of terms. The
terms involving the LECs g3 to g10 (cf. Appendix B) have
the structure B̄h+ v · u B. Their contributions are propo-
rional to v · k with k being the meson four–momentum.
The term v ·k is the energy of the meson in the rest frame
of the heavy baryon, i.e. vµ = (1, 0, 0, 0), and can be ex-
pressed as the difference of the squared masses of the ex-
ternal baryons. Since such mass differences are to lowest
order analytic in the quark masses they can be absorbed
by explicit symmetry breaking terms in LW (2)

φB of the form
B̄h+χ+B. In the following then we work only with the re-
maining counterterms and will omit the terms g3 to g10.
This leaves us with the following Lagrangian LW (1)

φB at
first order

LW (1)
φB

= 2g11

{
tr
(
B̄Sµ[h+, [uµ, B]]

)
+ tr

(
B̄Sµ[uµ, [h+, B]]

)}

+2g13

{
tr
(
B̄Sµ[h+, {uµ, B}]

)
+ tr

(
B̄Sµ{uµ, [h+, B]}

)}

+2g15

{
tr
(
B̄Sµ{h+, [uµ, B]}

)
+ tr

(
B̄Sµ[uµ, {h+, B}]

)}

+2g16

{
tr
(
B̄h+

)
Sµtr

(
uµB

)
+ tr

(
B̄uµ

)
Sµtr

(
h+B

)}

+2g18tr
(
B̄SµB

)
tr
(
uµh+

)
(14)

However, in second order there appear explicit symme-
try breaking terms besides the double–derivative terms

LW (2)
φB = LW (2,br)

φB +
∑

i

hiO
(2)
i (15)

with

LW (2,br)
φB

= h3

{
tr
(
B̄[h+, [χ+, B]]

)
+ tr

(
B̄[χ+, [h+, B]]

)}

+h5

{
tr
(
B̄[h+, {χ+, B}]

)
+ tr

(
B̄{χ+, [h+, B]}

)}

+h7

{
tr
(
B̄{h+, [χ+, B]}

)
+ tr

(
B̄[χ+, {h+, B}]

)}

+h8

{
tr
(
B̄h+

)
tr
(
χ+B

)
+ tr

(
B̄χ+

)
tr
(
h+B

)}

+h11tr
(
B̄[h+, B]

)
tr
(
χ+

)
+h12tr

(
B̄{h+, B]}

)
tr
(
χ+

)
(16)

Here χ+ = u†χu†+uχ†u is proportional to the quark mass
matrix M = diag(mu, md, ms), since χ = 2BM. Also,

B = −〈0|q̄q|0〉/ ◦
F

2
is the order parameter of the sponta-

neous symmetry violation, and we assume B � ◦
F . From

the entire list of the chiral order two double–derivative
terms it turns out that only two terms need to be retained∑

i

hiO
(2)
i =h1 tr

(
B̄[[Dµ, [Dµ, h+]], B]

)

+h2 tr
(
B̄{[Dµ, [Dµ, h+]], B}

)
(17)

The relativistic corrections do not contribute in this or-
der. Since we choose the four velocity vµ = (1, 0, 0, 0), i.e.
the rest frame of the decaying baryon, the derivative on
the incoming baryon field carries the velocity v. Therefore,
some of the terms vanish, because S · v = 0 or since they
are proportional to εµναβ vα vβ . On the other hand, the
energies of the external particles in the heavy baryon for-
malism can be expressed as the difference of the squared
masses of the external baryons and since such mass differ-
ences are to lowest order analytic in the quark masses they
count as chiral order two. Thus terms with two derivatives
v · D can be neglected.

We can further reduce the number of independent coun-
terterms, since h11 and h12 of LW (2,br)

φB amount to quark

mass renormalizations of d and f in LW (0)
φB . To be specific,

one can absorb the effects of h11 and h12 in d and f as
follows

d → d − hr
12 tr(χ+) , f → f − hr

11 tr(χ+) , (18)

where the superscript r denotes the finite remainder of
the LECs after renormalization, since the infinite pieces
of h11 and h12 cancel the divergences arising from the
loop diagrams. After that one absorbs the finite remainder
in the phenomenological values of d and f . This is a very
general feature of CHPT calculations in higher orders. For
example, in ππ scattering there exist six LECs at two loop
order (q6) [7], but only two new independent terms ∼ s3

and ∼ s M4
π . The other four LECs simply make the O(q4)

counter terms ¯̀
i (i = 1, 2, 3, 4) quark mass-dependent.

Here we lump the lower and higher order terms to-
gether in order to minimize the number of independent
couplings. Consider furthermore the terms h1 and h2
in (17). To the order we are working one can therein re-
place the covariant derivatives by the partial ones. Then
because k2 = M2

π , with k the momentum of the outgoing
pion, h1 and h2 can also be absorbed into d and f . So
we end up with the familiar two unknown counterterms
in lowest order and just eight in the next two orders.
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2.1 Estimation of the low energy constants

Performing the calculations with the complete Lagrangian
of Appendix B, one has, of course, no predictive power.
Indeed there exist only eight experimental results: the s-
and p-wave amplitudes for the four independent hyperon
decays. On the other side, the theoretical predictions con-
tain considerably more than eight low energy constants.
Clearly, we are not able to fix all the low–energy con-
stants appearing in LW

φB from data, even if we resort to
large Nc arguments. We will therefore use the principle of
resonance saturation in order to estimate the importance
of these constants, which works very accurately in the me-
son sector [8–10] and also in the baryon sector [11]. In the
baryon case, one has to account for excitations of meson
(R) and baryon (N∗) resonances. One writes down the ef-
fective Lagrangian with these resonances chirally coupled
to the Goldstone bosons and the baryon octet, calculates
the Feynman diagrams pertinent to the process under con-
sideration and, finally, lets the resonance masses become
infinite (with fixed ratios of coupling constants to masses).
This generates higher order terms in the effective meson–
baryon Lagrangian with coefficients expressed in terms of
a few known resonance parameters. Symbolically, we can
write

L̃eff [U, B, R, N∗ ]
mR,mN∗ →∞−→ Leff [U, B ] . (19)

It is important to stress that only after integrating out
the heavy degrees of freedom from the effective field the-
ory is one allowed to perform the heavy mass limit for the
ground–state baryon octet. Assuming that the spin-3/2
decuplet states are the main contributions to the LECs,
which is, e.g., the case in the self-energy diagrams of the
baryon octet, [11], we will treat our results as being only
indicative. This is for several reasons. On the one hand,
there exist many higher baryon resonances, e.g., the parity-
even spin–1/2 octet which includes the Roper N∗(1440).
Also, it is important to stress that for the resonance con-
tribution to the baryon masses, one has also to include
Goldstone boson loops, since there are no tree level dia-
grams contributing to the processes under consideration.
This is different from the situation as in form factors or
scattering processes. Treating these resonances relativisti-
cally leads to some complications that have already been
discussed in [11]:

◦ First, terms arise which are non–analytic in the meson
masses. Clearly, to avoid any double counting and to
be consistent with the requirements of analyticity, one
should only consider the analytic terms in the meson
masses generated by such loop diagrams. Here, we only
have to consider the terms up-to-and-including second
chiral order which are linear in the quark masses or
quadratic in the external momenta. Since the lowest
nonanalytic contributions in these resonance diagrams
appear at fourth order, we do not have to bother about
this.

◦ Second, to the order we are working, the analytic pieces
are divergent. Therefore, we can only determine the
analytic resonance contribution up to renormalization

constants. clearly then we do not obtain an explicit
numerical result for the LECs.

◦ Third, since the baryon excitations are treated rela-
tivistically, as explained above, there does not exist
strict power counting [12] and thus one must include
higher loop diagrams.

All the arguments mentioned above suggest that this
scheme can be used only to decide which LECs derive im-
portant contributions from resonances. We will thus use
the results from the resonance diagrams in the following
manner: If such diagrams do not contribute to a specific
LEC we neglect this constant. The remaining LECs will
be kept in our calculations as unknown parameters to be
fixed from experiment.

Consider now the decuplet contribution. We treat these
fields relativistically and only at the last stage let the mass
become very large. The interaction Lagrangian between
the spin–3/2 fields (denoted by ∆), the baryon octet and
the Goldstone bosons reads

L∆Bφ=
C
2

{
∆̄µ,abc Θµν(Z) (uν)i

a Bj
b εcij

−B̄b
i (uν)a

j Θνµ(Z) ∆µ
abc εcij

}
, (20)

where a, b, . . . , j are SU(3)f indices and the coupling con-
stant 1.2 < C < 1.8 can be determined from the decays
∆ → Bπ. The Dirac matrix operator Θµν(Z) is given by

Θµν(Z) = gµν −
(

Z +
1
2

)
γµ γν . (21)

For the off–shell parameter Z, we use Z = −0.3 from the
determination of the ∆ contribution to the πN scattering
volume a33 [13]. (This value is also consistent with recent
studies of ∆(1232) contributions to the nucleon electro-
magnetic polarizabilities [14] and to threshold pion photo–
and electroproduction [15].) For the processes to be dis-
cussed, we require only the lowest order form of uµ,

(uµ)i
a = − 2

Fπ
∂µ φi

a + O(φ2) . (22)

The propagator of the spin–3/2 fields is

Gβδ(p)=−i
p/ + m∆

p2 − m2
∆

×
(

gβδ − 1
3
γβγδ − 2pβpδ

3m2
∆

+
pβγδ − pδγβ

3m∆

)
, (23)

with m∆ = 1.38 GeV being the average decuplet mass.
Furthermore, we need the weak strangeness changing La-
grangian for the decuplet fields

LW
∆φ = hc ∆̄µ,abc(h+)i

a∆µ,ibc (24)

We can now evaluate the diagram shown in Fig. 1. With
the labeling of the momenta as in the figure, this leads to

I∆(p, q)=
−C2 hc√

22F 2
π

∫
d4k

(2π)4
(25)

× lσ Θσρ(Z) Gρµ(q + l) Gµν(p + l) Θνλ(Z)lλ
l2 − M2

a + iε
,
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l

p qp+ l q + l

k
Fig. 1. Baryon resonance excitation involving pion loops. The
double line represents the decuplet. Solid and dashed lines rep-
resent the ground state octet baryons and the Goldstone boson
fields, respectively. The solid square denotes ∆s = 1 weak in-
teraction vertices and the solid dot vertices arising from the
strong Lagrangian

where the relevant Clebsch–Gordan coefficient has been
omitted and Ma is the mass of the meson in the loop.
This integral is evaluated on the mass–shell of the exter-
nal baryons, i.e at p/ = q/ =

◦
m, and splits into various con-

tributions according to the power of momenta in the nu-
merator and the number of propagators. Each such term
is then expanded in powers of Goldstone boson masses
up-to-and-including O(M2

a ) for I∆(p, q). Only then is the
large mass limit of the decuplet taken. This then gives the
contribution to the various LECs. Assuming analyticity
of the integral with respect to the external momenta p
and q one can expand in terms of the momentum transfer
squared t = (p − q)2. This would amount to the following
expansion in the quark masses and t for the integral

I∆(p, q) = a + bM2
a + ct + . . . , (26)

where the ellipsis stand for higher orders and a, b, c are
constants. The term ct in the expansion for I∆(p, q) is
included in the terms with the LECs h1 and h2 in (17).
Since these effects are absorbed by d and f as explained
above, it is sufficient to evaluate the integral for t = 0,
i.e. p = q. We can now work out the complete integral at
p/ = q/ =

◦
m and find

I∆=i
2
9

(Z + 1)
{

7
[
2 L +

1
16π2 ln

(
m2

∆

λ2

)]
+

3
8π2

}

×m∆
◦
m + . . . + i

2
9
(Z + 1) (27)

×
{

2 L +
1

16π2 ln
(

m2
∆

λ2

)
+

3
8π2

} ◦
m

m∆
M2

a + . . .

where the ellipsis stand for subleading orders in the 1/m∆

expansion. One notices that in this relativistic treatment,
the dimension zero and two LECs are not finite (the di-
mension zero LECs are finite in the heavy baryon ap-
proach) [12]. The structure of (27) indicates that the first
and second term of I∆ contributes to d, f and the
h3,5,7,8,11,12, respectively. So we end up with the
Lagrangian given in the previous section except those
terms in LW (1)

φB .

3 Non-leptonic hyperon decays

Having constructed the relevant building blocks, we can
now get down to work. The matrix elements for non-
leptonic hyperon decay are written as

A(Bi → Bj π) = ūBj

{
A

(S)
ij + A

(P )
ij γ5

}
uBi

(28)

where A
(S)
ij is the parity-violating s-wave amplitude and

A
(P )
ij is the corresponding parity-conserving p-wave term.

In the heavy baryon formulation the p-wave must be mod-
ified, since γ5 connects the light with the heavy degrees
of freedom which are integrated out in this scheme. One
therefore introduces the modified heavy baryon p-wave
amplitude A(P )

ij by

A
(P )
ij = −1

2
(Ej + mj)A(P )

ij , (29)

where Ej and mj are the energy and mass of the outgoing
baryon, respectively. In the rest frame of the heavy baryon,
vµ = (1, 0, 0, 0), the decay amplitude reduces to the non-
relativistic form

A(Bi → Bj π)=χ̄Bj

{
A(S)

ij +
1
2

k · σ A(P )
ij

}
χBi

=χ̄Bj

{
A(S)

ij + S · k A(P )
ij

}
χBi

, (30)

where k is the outgoing momentum of the pion and Sµ is
the Pauli-Lubanski spin vector, which in the rest frame is
given by Sµ

v=0 = (0, 1
2σ). Isospin symmetry of the strong

interactions implies the relations

A(Λ → p π−) +
√

2 A(Λ → n π0) = 0

A(Ξ− → Λ π−) +
√

2 A(Ξ0 → Λ π0) = 0√
2 A(Σ+ → p π0) + A(Σ− → n π−)

−A(Σ+ → n π+) = 0 (31)

which hold both for s- and p-waves. We choose Σ+ →
n π+ , Σ− → n π− , Λ → p π− andΞ− → Λ π− to be the
four independent decay amplitudes which are not related
by isospin.

We calculate all tree and one loop diagrams contribut-
ing to these processes by making use of the Lagrangian
from the previous section. For the p-waves we have to con-
sider pole diagrams, which leads to some difficulties with
the usual chiral counting scheme. Thus consider the in-
verse of the free propagator of the internal baryon, which
is either v · p or v · q with p and q being the off-shell mo-
menta of the incoming or outcoming baryon, respectively.
For example, in the rest frame of the decaying baryon the
kinetic energy of the outgoing baryon may be written as

v · q =
1

2 mi

(
m2

i + m2
j − 2

◦
m mi − M2

π

)
. (32)

Since the baryon masses are analytic to linear order in the
quark masses we see that v · q = O(p2), as noted in the
previous section.
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The general structure of the s-wave decay amplitudes
is

A(s)
ij =

1√
2 Fπ

{
α

(s)
ij + β

(s) Q
ij M2

Q

+
1

Λ2
χ

γ
(s) Q
ij M2

Q ln

(
M2

Q

µ2

)
+

1
Λ2

χ

α
(s)
ij λij

}
(33)

where Q = π, K, η and µ represents the dimensional reg-
ularization scale. Also, Λχ = 4πFπ represents the scale
of chiral symmetry breaking and arises naturally during
the evaluation of the loop integrals. The coefficient αij is
the tree level result, while βij contains both the contribu-
tions from the second order counterterms and the analytic
parts of the loop diagrams, and γij summarizes the non-
analytic loop pieces. Finally, we have the modifications
arising from the multiplication of the tree result with the
wavefunction renormalization Z-factors and from replac-
ing the pseudoscalar decay constant in the chiral limit

◦
F

by the physical pion decay constant Fπ. Since we do not
include self-energy corrections of the external particles ex-
plicitly, we have to multiply the decay amplitudes by the
relevant Z-factors. To be specific, the quantity λij is de-
fined as follows

1
Λ2

χ

λij =
1
2
(Zi −1)+

1
2
(Zj −1)+

1
2
(Zπ −1)+ δFπ , (34)

where the specific expressions for the Z-factors and δFπ

can be found in Appendix C.
The diagrams that contribute to the s-waves are shown

in Fig. 2. Here the loop diagrams are divergent and have to
be renormalized by appropriate counterterms. The renor-
malization procedure is outlined in the next section. The
decay amplitudes are then expressed in terms of the fi-
nite remainder of the LECs. For notational simplicity, we
will use the same symbol for the finite remainder of these
LECs by neglecting the superscript r. That is, e.g., h3 is
actually hr

3, where hr
3 is the finite remainder defined in

the next section. Furthermore, we count the external mo-
menta multiplied by the four–velocity v as effectively of
order O(p2), which allows us to write the analytic results
of the loop integrals in a more compact form by neglecting
higher order parts. The results then read

α
(s)
Σ−n=d − f

β
(s) π
Σ−n=−4h3 − 4h5 + 4h7 +

1
Λ2

χ

(D + F )

×
(

2F (d − f) − 1
3
D(d + 3f)

)

β
(s) K
Σ−n =4h3 − 4h5 − 4h7 +

1
Λ2

χ

(D + F )

×
(

−1
2
(D − F )(d + f) +

1
6
(D + 3F )(d − 3f)

)

β
(s) η
Σ−n=− 1

Λ2
χ

1
3
(D − 3F )D(d − f)

a) b)

c) d)

e)

Fig. 2. Diagrams contributing to s-wave non-leptonic hyperon
decays. Solid and dashed lines denote octet baryons and Gold-
stone bosons, respectively. The solid square represents a weak
vertex and the solid circle denotes a strong vertex
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All the other coefficients in (33) vanish.
For the p-waves one has the form

A(p)
ij =

1√
2Fπ

{
α

(p)
ij + β

(p) Q
ij M2

Q +
1

Λ2
χ

γ
(p) Q
ij M2

Q

× ln

(
M2

Q

λ2

)
+ ε

(p)
ij +

1
◦
m

v · k δ
(p)
ij +

1
◦
m

ρ
(p)
ij

+
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Λ2
χ

α
(p)
ij λij +

1
2

hπ
M2

π

M2
π − M2

K

φ
(p)
ij

}
(36)

The ε
(p)
ij are the contributions of the counterterms g11 to

g16 of the weak Lagrangian LW (1)
φB . Both the terms δ

(p)
ij

and ρ
(p)
ij arise from additional 1/

◦
m corrections appearing

for the p-waves as described in Appendix B whereas φ
(p)
ij

is the contribution from the weak decay of the meson.
The diagrams which contribute to p-waves are depicted

in Fig. 3 and Fig. 4. (Note that diagrams 3l, 3 m have not
been considered in previous calculations.) In most of the
diagrams we obtain expressions that are proportional to
the internal baryon propagator. The denominator of the
propagator is either v · p = mi− ◦

m or v · q = Ej− ◦
m. The

values of mi, the physical mass of the decaying baryon,
and Ej , the relativistic energy of the outgoing baryon, are
fixed from experiment, since we are in the rest frame of
the heavy baryon. On the other side,

◦
m must be predicted

from theory, [11]. But this quantity is not well known. The
internal baryon propagator is of chiral order O(p−2) and
very sensitive to modifications in

◦
m. Different values for

◦
m

alter the results for the p-waves significantly. In order to
make our results more stable we replace

◦
m by the physical

mass of the internal baryon. The remainder of the self-
energy diagrams of the internal baryon, which include the
off-shell momentum and do not directly contribute to the
mass, are considered only to the order we are working.
In [16] only a part of this remainder has been considered.
The explicit forms of the coefficients in (36) can be found
in Appendix D.

3.1 Renormalization

The loop contributions to the decays are, of course, diver-
gent and we must renormalize s- and p-waves separately.
We start with the s-waves. The corresponding loop dia-
grams are shown in Fig. 2. In order to calculate them we
use dimensional regularization. The mass dependent di-
vergences can then be absorbed by the hi terms

hi = hr
i (µ) +

L

24 F 2
π

Γi (37)

with µ being the scale of dimensional regularization and

L =
µd−4

16π2

{
1

d − 4
− 1

2
[ln(4π) + 1 − γE ]

}
(38)

with γE = 0.5772215.. being the Euler-Mascheroni con-
stant. The scale dependence of the hr

i (µ) follows from (37):

hr
i (µ2) = hr

i (µ1) +
Γi

24 (4πFπ)2
ln

µ1

µ2
. (39)

In the following, we set µ = 1 GeV. Renormalizing the
s-wave amplitudes one obtains for Γi

Γ3=7d + 2D2d + 18F 2d − 12DFf

Γ5=
21
2

f + 3DFd +
21
2

D2f − 27
2

F 2f

Γ7=
21
2

f − 3DFd +
27
2

D2f +
27
2

F 2f

Γ8=14d − 22D2d + 18F 2d + 36DFf

Γ11=−10f + 36DFd − 34D2f − 18F 2f

Γ12=4d + 12D2d − 36F 2d + 72DFf (40)
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a) b) c)

d) e)

f) g)

h) i)

j) k)

l) m)

n) o)

p) q)

Fig. 3. Diagrams contributing to p-wave non-
leptonic hyperon decays. Solid and dashed
lines denote octet baryons and Goldstone
bosons, respectively. The solid square repre-
sents a weak vertex and the solid circle denotes
a strong vertex
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p q

k

Fig. 4. Diagram with a weak decay of the meson. Solid and
dashed lines denote octet baryons and Goldstone bosons, re-
spectively. The solid square represents a weak vertex and the
solid circle denotes a strong vertex

The diagrams 2 c - 2 e also involve momentum dependent
divergences, which are quadratic in the energies of the
external on-shell particles, leading to terms proportional
to (v · p)2, v · p v · q and (v · q)2. In order to keep the result
finite one has to add the counterterms
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(
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(41)

This completes the renormalization of the s-waves.
Some of the above mentioned counterterms also con-

tribute to the renormalization of the p-waves. But in addi-
tion one has to include further higher order counterterms
of the weak Lagrangian and also counterterms from the
strong sector. To cancel the divergences arising in the cal-
culation of the p-wave amplitudes one has the prescription

Hi = Hr
i (µ) +

L

48 F 2
π

Γ ′
i (42)

with the Hi defined in (B.15) and

Γ ′
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For the momentum dependent divergences one has to in-
clude the terms

3 Dd
L

F 2
π

i
{

tr
(
B̄Sµ{uµ, {h+, [v · D, B]}}

)
−tr
(
[v · D, B̄]Sµ{h+, {uµ, B}}

)}
+
(

3 Df − 5
2
D2Fd − 3

2
F 3d − 1

6
D3f +

3
2
DF 2f

)
× L

F 2
π

i
{

tr
(
B̄Sµ{uµ, [h+, [v · D, B]]}

)
−tr
(
[v · D, B̄]Sµ[h+, {uµ, B}]

)}
+
(

− 5
2
D2Fd − 3

2
F 3d − 1

6
D3f +

3
2
DF 2f

)
× L

F 2
π

i
{

tr
(
B̄Sµ{h+, [uµ, [v · D, B]]}

)
−tr
(
[v · D, B̄]Sµ[uµ, {h+, B}]

)}
+
(
3 Fd − 7

6
D2Fd − 3

2
F 3d − 3

2
D3f +

3
2
DF 2f

)
× L

F 2
π

i
{

tr
(
B̄Sµ[uµ, {h+, [v · D, B]}]

)
−tr
(
[v · D, B̄]Sµ{h+, [uµ, B]}

)}
+
(

− 7
6
D2Fd − 3

2
F 3d − 3

2
D3f +

3
2
DF 2f

)
× L

F 2
π

i
{

tr
(
B̄Sµ[h+, {uµ, [v · D, B]}]

)
−tr
(
[v · D, B̄]Sµ{uµ, [h+, B]}

)}
+
(
3 Ff − 1

9
D3d +

7
3
DF 2d +

7
3
D2Ff − F 3f

)



94 B. Borasoy, Barry R. Holstein: Non-leptonic hyperon decays in chiral perturbation theory
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This completes the renormalization of the p-waves. Note,
that the renormalization of the pure strong sector is in
agreement with [17].

4 Results and discussion

In this section we discuss the numerical values of the
LECs and the fit to experiment. There exist eight inde-
pendent experimental numbers, i.e. s- and p-wave ampli-
tudes for the four decays Σ+ → n π+ , Σ− → n π− , Λ →
p π− andΞ− → Λ π−, which are not related by isospin.
The central values for our parameters are Fπ = 93MeV,
D = 0.75, F = 0.50 and we set µ = 1.0GeV. For

◦
m, the

octet baryon mass in the chiral limit, we use
◦
m= 767MeV

[11]. For the various mesonic LECs Lr
i (µ), we use the cen-

tral values taken from the compilation of Bijnens et al. in
[18].

Initially, we neglect the counterterms g11 to g16 from
the weak Lagrangian LW (1)

φB since they are presumed to
be absent within the resonance saturation picture. (Note,
that g18 does not contribute to the decay amplitudes.)
This leaves us with just the coupling constants d, f and
h3, h5, h7, h8 after the four LECs h1, h2, h11, h12 have been
absorbed into d and f . A simple least-squares fit to the
decay amplitudes turns out, however, to be very unsatis-
factory. Although the s-waves can be well fit, there exist
large discrepancies between the results and the experimen-
tal values for the p-wave decay amplitudes. A simultane-
ous fit of s- and p-waves is impossible – there is also no
recognizable convergence in the chiral expansions and the
results are not realistic, so we do not present them here.
One can disentangle d, f and the four LECs h1, h2, h11, h12
in order to perform a better fit. But the eight LECs hi ap-
pear only in four different combinations in the expressions
for the decay amplitudes, so that a similar least–squares
fit has to be performed yielding the same result. This leads
us to the conclusion that the estimation of the LECs via
the resonance saturation principle is very unsatisfactory.

In order to obtain a good fit to the decay amplitudes it
is necessary to go beyond the resonance estimate hypoth-
esis. As the simplest such possibility we take the terms
g11 to g16 into account. In this case, we have the ten un-
known weak LECs d, f and h3, h5, h7, h8, g11, g13, g15, g16.
It is, of course, then possible to fit the eight independent
decay amplitudes exactly in many different ways. We will
perform the fit as described below, delivering reasonable
results. Note, that the coupling constants d, f and the
other LECs should not be treated on the same level, since
the former contribute at lowest order, whereas the latter
constitute only higher order corrections.

The p-waves are sensitive to relatively small changes in
the parameters d and f , since the pole diagrams contribut-
ing to the p-wave decays all involve cancellations between
two or more diagrams with opposite signs [4], yielding a
final result smaller than the individual components. This
suggests that the higher order terms that have been ne-
glected in former papers, [3,4,19], will play a more im-
portant role for the p-waves than for the s-waves. In light
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Table 1. Experimental values of the decay amplitudes includ-
ing the errors. The numbers have to be multiplied by a factor
of 10−7

A(s)
Σ+n

A(s)
Σ−n

A(s)
Λp A(s)

Ξ−Λ

0.13 ± 0.02 4.27 ± 0.02 3.25 ± 0.02 −4.51 ± 0.02

A(p)
Σ+n

A(p)
Σ−n

A(p)
Λp A(p)

Ξ−Λ

44.4 ± 0.16 −1.52 ± 0.16 23.4 ± 0.56 14.8 ± 0.55

of this sensitivity of the p-wave amplitudes, we elect to
first perform a least-squares fit to just the s-waves for d
and f by using only the tree result. After that we perform
a fit to the complete expressions to second chiral order
of the s-waves by using the LECs h3, h5, h7 and h8, but
keeping d and f fixed. The decay amplitude A(s)

Σ+n cannot
be fit since it derives no contribution from the countert-
erms considered here and has a nonvanishing experimental
value. Thus we have to impose an additional constraint on
the hi which we arbitrarily choose to be h5 = h7. (As it
turns out replacing this constraint by a different realistic
one does not alter the results significantly. In the follow-
ing we will therefore work with h5 = h7.) Finally, we are
able to fit the p-waves exactly by using the counterterms
g11, g13, g15, g16, which contribute only to the p-waves, and
keeping the other LECs fixed.

A consistent picture emerges. The chiral expansions of
the decay amplitudes read in units of 10−7

A(s)
Σ+n=0.0 + 0.0 + 0.0 = 0.0 ,

A(p)
Σ+n=1.47 + 96.1 − 53.2 = 44.4 ,

A(s)
Σ−n=4.37 + 1.29 − 1.39 = 4.27 ,

A(p)
Σ−n=7.37 − 3.50 − 5.39 = −1.52 ,

A(s)
Λp=3.33 + 2.08 − 2.16 = 3.25 ,

A(p)
Λp=−25.9 − 2.96 + 52.26 = 23.4 ,

A(s)
Ξ−Λ=−4.34 − 1.74 + 1.57 = −4.51 ,

A(p)
Ξ−Λ=7.37 + 10.16 − 2.73 = 14.8 , (45)

where the first number is the lowest order contribution,
the second number contains the nonanalytic pieces to the
decay amplitudes and the contributions of the higher or-
der counterterms are summarized in the third number.
We observe that the s–wave results show reasonable con-
vergence of the chiral expansion. However, there are large
contributions in the higher orders for the p-waves, espe-
cially for A(p)

Σ+n and A(p)
Λp . The experimental values for the

decay amplitudes can be found in Table 1. The numerical
values for the LECs are presented in Table 2.

It is interesting to note that the Lee-Sugawara relation
[20], which is a prediction of SU(3) symmetry, reads

AΛp + 2AΞ−Λ +

√
3
2

(
AΣ−n − AΣ+n

)
= 0 (46)

and is exactly fulfilled for the s-waves to lowest order.
Adding the higher order contributions we find for s-waves
(in units of 10−7)

A(s)
Λp +2A(s)

Ξ−Λ +

√
3
2

(
A(s)

Σ−n −A(s)
Σ+n

)
= 0−0.54 = −0.54 .

(47)
After disentangling the various contributions, we obtain
for p-waves

A(p)
Λp + 2A(p)

Ξ−Λ +

√
3
2

(
A(p)

Σ−n − A(p)
Σ+n

)
= −3.95 + 0.77 = −3.18 . (48)

The final results on the right side of the equations are
much smaller than the individual terms on the left-hand
side. The pertinent experimental values are −0.70 × 10−7

and −3.18 × 10−7 for s- and p-waves, respectively.

4.1 Theoretical uncertainties

In the previous section we gave the results for the cen-
tral values of the parameters Fπ, D, F, µ and

◦
m. Here, we

will discuss the spread of the results due to uncertainties
related to these numbers.

Consider first the dependence on the octet baryon mass
in the chiral limit

◦
m. In order to understand the un-

certainty in this variable we choose the nucleon mass,
◦
m= 940MeV. The variations in the fitted numerical val-
ues of the LECs can be found in Table 2. In our re-
sults

◦
m is contained only in the relativistic corrections

and a variation in
◦
m does not alter the results consider-

ably. Next, we consider a variation in the coupling con-
stants D and F . For comparison with our central val-
ues we use D = 0.85 ± 0.06, F = 0.52 ± 0.04 given by
Luty and White [21]. Finally, we alter the scale of di-
mensional regularization µ. This dependence is introduced
since we neglect some of the LECs of the entire Lagrangian
and would disappear once all LECs could be determined
from data. In Table 2 we show the results for the range
0.8 GeV ≤ µ ≤ 1.2 GeV, for the central values of Fπ, F, D

and
◦
m. We therefore assign the follwing theoretical un-

certainties to the results of the LECs h3, h5, h7, h8 and
g11, g13, g15, g16 after setting h5 = h7.

h3=0.03 ± 0.06 , h5 = 0.10 ± 0.06
h7=0.10 ± 0.06 , h8 = 0.08 ± 0.11
g11=−0.48 ± 0.04 , g13 = −0.20 ± 0.08
g15=0.44 ± 0.07 , g16 = −3.76 ± 0.60 (49)

The numbers are given in units of 10−7GeV0 and
10−7GeV−1 for the gi and hi, respectively. In our scheme
of fitting LECs to experiment, the values for d and f do
not change when varying the above mentioned parameters.
We therefore cannot quote errorbars for these couplings.
Note also, that the LEC g16 has a much larger value than
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Table 2. Numerical values of the LECs obtained from a fit by using different values of the parameters
Fπ, D, F , µ and

◦
m and with the additional assumption h5 = h7. The first row shows the result for

the central values Fπ = 93MeV, D = 0.75, F = 0.5, µ = 1.0 GeV and
◦
m= 767 MeV. In the second

row
◦
m= 940 MeV is used, D = 0.85, F = 0.52 in the third row. We changed the scale of dimensional

regularization to µ = 1.2 GeV and µ = 0.8 GeV in the fourth and fifth row, respectively. The numbers
have to be multiplied by a factor of 10−7

d f h3 h5 h7 h8 g11 g13 g15 g16

[GeV] [GeV] [GeV−1] [GeV−1] [GeV−1] [GeV−1] [GeV0] [GeV0] [GeV0] [GeV0]

0.16 −0.41 0.03 0.10 0.10 0.10 −0.48 −0.24 0.44 −3.76
0.16 −0.41 0.03 0.10 0.10 0.10 −0.47 −0.23 0.44 −3.76
0.16 −0.41 0.05 0.11 0.11 0.13 −0.47 −0.13 0.46 −4.33
0.16 −0.41 0.07 0.14 0.14 0.19 −0.45 −0.26 0.39 −3.75
0.16 −0.41 −0.02 0.05 0.05 −0.02 −0.51 −0.21 0.51 −3.78

the other LECs. This is due to the large nonanalytic cor-
rection for the decay Σ+ → nπ+ which is mainly com-
pensated by g16. The counterterm g16 contributes only to
this decay.

The uncertainties in the low-energy constants do not
include the possible effects of higher orders, which can only
be assessed if one performs a multi-loop calculation. This,
however, goes beyond the scope of the present paper.

5 Summary and conclusions

In this paper, we have considered the decay amplitudes
for the non-leptonic hyperon decays, to linear (quadratic)
order in the quark (Goldstone boson) masses, in the frame-
work of heavy baryon chiral perturbation theory. The key
results of this investigation can be summarized as follows:
◦ We have constructed the most general weak effective

Lagrangian to O(p2) in the small parameter p (exter-
nal momentum or meson mass) and to O(p3) for the
strong effective Lagrangian necessary to investigate the
decay amplitudes. For the weak Lagrangian we have in-
troduced two independent combinations of the spurion
field h, that transform like mass fields, and have also

included kinematical 1/
◦
m and 1/

◦
m

2
corrections.

◦ We are unable to fix the weak LECs strictly from ex-
periment even if we were to resort to large Nc ar-
guments. For the strong Lagrangian, D = 0.75 and
F = 0.50 give a satisfactory fit to semileptonic hyperon
decay data, and we therefore neglect the higher order
contributions to the axial-vector couplings D and F
in this Lagrangian. For the weak Lagrangian we first
attempted to use the exchange of the ∆ resonance as
an indication which LECs are important. There exist
then two LECs at lowest order O(p0) – d and f – and
eight at order O(p2) – h1,2,3,5,7,8,11,12. Four of the lat-
ter amount to quark mass renormalizations of d and
f and can be absorbed after an appropriate redefini-
tion of these coupling constants. But it turns out that
there exist large discrepancies between the results of
such a fit and the experimental values for the decay
amplitudes – there is no recognizable convergence in
the chiral expansions and the results are not realistic.

This seems to indicate that we have neglected some
significant LECs. The obvious solution is to include
the counterterms from the next–to–leading order La-
grangian LW (1)

φB . This was also suggested in [5] where
a rough estimate of the LECs of the weak baryon La-
grangian of order O(p) has been given using the weak
deformation model. The author comes to the conclu-
sion that one cannot understand nonleptonic hyperon
decays without such terms. We agree with this as-
sertion and conclude that one must include four new
LECs g11, g13, g15, g16 which contribute only to the p-
waves. In order to estimate the LECs, we first perform
a least-squares fit to the s-waves for d and f using only
the tree level result. The reason for not including the
p-waves in this fit is that in this case the higher order
corrections are much more significant than for the s-
waves due to cancellations between the pole diagrams.
For the higher order LECs hi a fit is then performed
by applying the complete expression for the s-waves.
The remaining LECs g11, g13, g15, g16 are then fitted
by applying the entire expressions for the p-waves. We
achieve an excellent fit to the experimental values of
the decay amplitudes. The chiral expansions for the
s-waves are reasonably well behaved whereas for the
p-waves we find significant higher order contributions,
especially for A(p)

Σ+n and A(p)
Ξ−Λ.

◦ A possible approach to improving the convergence of
the chiral expansion might be to include the decuplet
as explicit degrees of freedom. A first step towards this
direction has already been undertaken in [4,16] but
only the leading non-analytic pieces from the loops
were retained. In order to get the full picture one has
to account for all counterterms. This would avoid the
uncertainty in estimating the LECs via the resonance
saturation scheme, but on the other hand introduce
new unknown coupling constants. Such a calculation,
however, is far beyond the scope of this work.
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Appendix:

A Construction principles
for the relativistic Lagrangian

In this appendix we present some construction principles
for the most general Lagrangian in the relativistic for-
mulation which is invariant under CPS and chiral trans-
formations. The transformation S interchanges down and
strange quarks in the Lagrangian. We will work in the CP
limit so that all LECs are real. Note, that C and P invari-
ance are not required separately. The weak interactions
start at zeroth chiral order whereas the strong interac-
tions begin at first order. It immediately follows from chi-
ral counting that to the order we are working one needs the
weak Lagrangian up-to-and-including second order and to
third order for the strong sector. For this purpose, it is
convenient to use the combination

h+ = u†hu + u†h†u , (A.1)

with ha
b = δa

2δ3
b the weak transition matrix. h+ transforms

as matter field. Under CP transformations the fields be-
have like follows

B → γ0CB̄T , B̄ → BT Cγ0 , uµ → −uT
µ ,

h+ → hT
+ , Dµ → −DT

µ ,

χ+ → χT
+ , χ− → −χT

− , (A.2)

where C is the usual charge conjugation matrix. There are
some relations which can be used to reduce the number
of independent terms in the Lagrangian. First there is the
equation of motion (eom) for the baryons, which to lowest
order it reads

iγµ[Dµ, B]− ◦
m B = 0 (A.3)

with an analogous relation for B̄. Terms of higher orders
in the eom are neglected here since they can be absorbed
by appropriate counterterms. Using the eom one can re-
duce the number of derivatives acting on the baryon field
– e.g. it turns out that the terms of the form tr

(
B̄σµν{Aν ,

[Dµ, B]}
)

can be neglected after decomposing the σµν in
terms of γ matrices. Here, Aν denotes any combination of
fields and there are analogous terms where the anticom-
mutator is replaced by the commutator. Another relation
is

tr
(
B̄γµ(Aµν , [Dν , B])

)
' tr

(
B̄γν(Aµν , [Dµ, B])

)
,

(A.4)
where ' stands for the equality up to terms of higher
order.

Second, there are the Cayley-Hamilton identities. For
two traceless 3 × 3 matrices A1 and A2 the pertinent
Cayley-Hamilton identity reads

tr
(
B̄{A1, {A2, B}}

)
+

1
2
tr
(
B̄{A2, {A1, B}}

)

+
1
2
tr
(
B̄[A2, [A1, B]]

)
= tr

(
B̄B

)
tr
(
A1A2

)
+ tr

(
B̄A1

)
tr
(
A2B

)
+tr
(
B̄A2

)
tr
(
A1B

)
. (A.5)

For the case with only A1 traceless this identity becomes

tr
(
B̄{A1, {A2, B}}

)
+

1
2
tr
(
B̄{A2, {A1, B}}

)
+

1
2
tr
(
B̄[A2, [A1, B]]

)
= tr

(
B̄B

)
tr
(
A1A2

)
+ tr

(
B̄A1

)
tr
(
A2B

)
+tr
(
B̄A2

)
tr
(
A1B

)
+ tr

(
B̄{A1, B}

)
tr
(
A2

)
. (A.6)

and these are the only Cayley-Hamilton identities we need
here.

The total Lagrangian can be decomposed as follows

Leff = LφB + LW
φB + Lφ + LW

φ (A.7)

with the strong and weak mesonic Lagrangians Lφ and
LW

φ , respectively, as given in [6] and (6).
For the weak meson-baryon Lagrangian one gets

LW
φB = LW (0)

φB + LW (1)
φB + LW (2)

φB , (A.8)

where the superscript denotes the chiral order. Since we
will work in the heavy baryon formalism, we do not list the
whole Lagrangian explicitely. The pertinent heavy baryon
Lagrangian which one gets after integrating out the heavy
degrees of freedom is shown in the next appendix.

Finally, the strong meson-baryon Lagrangian reads

LφB = L(1)
φB + L(2)

φB + L(3)
φB (A.9)

with L(1)
φB the usual meson-baryon Lagrangian to lowest

order. Here L(2)
φB does not contribute to the order we are

working while L(3)
φB decomposes into

L(3)
φB = L(3,br)

φB +
∑

i

Hi O
(3)
i (A.10)

where L(3,br)
φB explicitely breaks the chiral symmetry and

the O
(3)
i denote monomials in the fields of chiral order

three.

B The non-relativistic Lagrangian

The purpose of this appendix is to present the effective
Lagrangian in the heavy baryon formalism. Starting from
the relativistic Lagrangian of Appendix A one integrates
out the heavy degrees of freedom. To this end the baryon
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field B is split into upper and lower components with fixed
four-velocity v

Bv=ei
◦
mv·x 1

2
(1 + v/)B

bv=ei
◦
mv·x 1

2
(1 − v/)B (B.1)

In the heavy mass formulation the Dirac algebra simplifies
considerably and any Dirac bilinear can be expressed in
terms of the four-velocity vµ and the spin-operator 2Sµ =
iγ5σµνvν . The effective Lagrangian can then be derived by
the path integrals. In this formulation, the 1/

◦
m corrections

are easily constructed. This method is outlined e.g. in [23]
and [24] and will not be repeated here. We only state our
result. For the sake of simplicity we will omit the index v
from the field Bv and the Lagrangian will be denoted by L
as in the relativistic case. The Lagrangian can be written
as follows

Leff = LφB + LW
φB + Lφ (B.2)

with the same mesonic Lagrangian Lφ as in the relativistic
case and

LW
φB = LW (0)

φB + LW (1)
φB + LW (2)

φB (B.3)

LW (0)
φB = d tr

(
B̄{h+, B}

)
+ f tr

(
B̄[h+, B]

)
(B.4)

LW (1)
φB =

∑
i

giO
(1)
i (B.5)

with the O
(1)
i monomials in the fields of chiral order one.

The set of such terms is given by∑
i

giO
(1)
i

= g3

{
tr
(
B̄[h+, [v · u, B]]

)
+ tr

(
B̄[v · u, [h+, B]]

)}

+g5

{
tr
(
B̄[h+, {v · u, B}]

)
+ tr

(
B̄{v · u, [h+, B]}

)}

+g7

{
tr
(
B̄{h+, [v · u, B]}

)
+ tr

(
B̄[v · u, {h+, B}]

)}

+g8

{
tr
(
B̄h+

)
tr
(
v · uB

)
+ tr

(
B̄v · u

)
tr
(
h+B

)}

+g10tr
(
B̄B

)
tr
(
v · u h+

)
+2g11

{
tr
(
B̄Sµ[h+, [uµ, B]]

)
+ tr

(
B̄Sµ[uµ, [h+, B]]

)}

+2g13

{
tr
(
B̄Sµ[h+, {uµ, B}]

)
+ tr

(
B̄Sµ{uµ, [h+, B]}

)}

+2g15

{
tr
(
B̄Sµ{h+, [uµ, B]}

)
+ tr

(
B̄Sµ[uµ, {h+, B}]

)}

+2g16

{
tr
(
B̄h+

)
Sµtr

(
uµB

)
+ tr

(
B̄uµ

)
Sµtr

(
h+B

)}

+2g18tr
(
B̄SµB

)
tr
(
uµh+

)
(B.6)

In the next order appear explicit symmetry breaking terms
besides the relativistic corrections and double–derivative
terms.

LW (2)
φB = LW (2,br)

φB +
∑

i

hiO
(2)
i + LW (2,rc)

φB (B.7)

LW (2,br)
φB

= h3

{
tr
(
B̄[h+, [χ+, B]]

)
+ tr

(
B̄[χ+, [h+, B]]

)}

+h5

{
tr
(
B̄[h+, {χ+, B}]

)
+ tr

(
B̄{χ+, [h+, B]}

)}

+h7

{
tr
(
B̄{h+, [χ+, B]}

)
+ tr

(
B̄[χ+, {h+, B}]

)}

+h8

{
tr
(
B̄h+

)
tr
(
χ+B

)
+ tr

(
B̄χ+

)
tr
(
h+B

)}

+h10tr
(
B̄B

)
tr
(
χ+h+

)
+h11tr

(
B̄[h+, B]

)
tr
(
χ+

)
+ h12tr

(
B̄{h+, B]}

)
tr
(
χ+

)
+h13

{
tr
(
B̄[h+, [χ−, B]]

)
− tr

(
B̄[χ−, [h+, B]]

)}

+h15

{
tr
(
B̄[h+, {χ−, B}]

)
− tr

(
B̄{χ−, [h+, B]}

)}

+h18

{
tr
(
B̄h+

)
tr
(
χ−B

)
− tr

(
B̄χ−

)
tr
(
h+B

)}
(B.8)

∑
i

hiO
(2)
i

= h1 tr
(
B̄[[Dµ, [Dµ, h+]], B]

)
+h2 tr

(
B̄{[Dµ, [Dµ, h+]], B}

)
+ih23

{
tr
(
B̄[h+, [[Dµ, uµ], B]]

)

−tr
(
B̄[[Dµ, uµ], [h+, B]]

)}

+ih25

{
tr
(
B̄[h+, {[Dµ, uµ], B}]

)

−tr
(
B̄{[Dµ, uµ], [h+, B]}

)}

+ih28

{
tr
(
B̄h+

)
tr
(
[Dµ, uµ]B

)

−tr
(
B̄[Dµ, uµ]

)
tr
(
h+B

)}

+2h31 εµναβ vα

{
tr
(
B̄Sβ [h+, [[Dµ, uν ], B]]

)

+tr
(
B̄Sβ [[Dµ, uν ], [h+, B]]

)}

+2h33 εµναβ vα

{
tr
(
B̄Sβ [h+, {[Dµ, uν ], B}]

)
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+tr
(
B̄Sβ{[Dµ, uν ], [h+, B]}

)}

+2 h35 εµναβ vα

{
tr
(
B̄Sβ{h+, [[Dµ, uν ], B]}

)

+tr
(
B̄Sβ [[Dµ, uν ], {h+, B}]

)}

+2 h36 εµναβ vα

{
tr
(
B̄h+

)
Sβtr

(
[Dµ, uν ]B

)

+tr
(
B̄[Dµ, uν ]

)
Sβtr

(
h+B

)}

+2 h38 εµναβ vα tr
(
B̄SβB

)
tr
(
[Dµ, uν ]h+

)
+2 ih39

{
tr
(
B̄Sµ[h+, [[v · D, uµ], B]]

)

−tr
(
B̄Sµ[[v · D, uµ], [h+, B]]

)}

−2 i
(

h39+
◦
m h55

){
tr
(
B̄Sµ[h+, [[Dµ, v · u], B]]

)

−tr
(
B̄Sµ[[Dµ, v · u], [h+, B]]

)}

+2 ih41

{
tr
(
B̄Sµ[h+, {[v · D, uµ], B}]

)

−tr
(
B̄Sµ{[v · D, uµ], [h+, B]}

)}

−2 i
(

h41+
◦
m h57

){
tr
(
B̄Sµ[h+, {[Dµ, v · u], B}]

)

−tr
(
B̄Sµ{[Dµ, v · u], [h+, B]}

)}

+2 ih44

{
tr
(
B̄h+

)
Sµtr

(
[v · D, uµ]B

)

−tr
(
B̄[v · D, uµ]

)
Sµtr

(
h+B

)}

−2 i
(

h44+
◦
m h60

){
tr
(
B̄h+

)
Sµtr

(
[Dµ, v · u]B

)

−tr
(
B̄[Dµ, v · u]

)
Sµtr

(
h+B

)}

−i
◦
m h47

{
tr
(
B̄[h+, [[v · D, v · u], B]]

)

−tr
(
B̄[[v · D, v · u], [h+, B]]

)}

−i
◦
m h49

{
tr
(
B̄[h+, {[v · D, v · u], B}]

)

−tr
(
B̄{[v · D, v · u], [h+, B]}

)}

−i
◦
m h52

{
tr
(
B̄h+

)
tr
(
[v · D, v · u]B

)

−tr
(
B̄[v · D, v · u]

)
tr
(
h+B

)}
(B.9)

The relativistic corrections are

LW (2,rc)
φB

=
1
◦
m

g3

[
i
2

tr
(
B̄[h+, [[Dµ, uµ], B]]

)
+i tr

(
B̄[h+, [uµ, [Dµ, B]]]

)
+

i
2

tr
(
B̄[[Dµ, uµ], [h+, B]]

)
+ i tr

(
B̄[uµ, [h+, [Dµ, B]]]

)
− i

2
tr
(
B̄[h+, [[v · D, v · u], B]]

)
−i tr

(
B̄[h+, [v · u, [v · D, B]]]

)
− i

2
tr
(
B̄[[v · D, v · u], [h+, B]]

)
−i tr

(
B̄[v · u, [h+, [v · D, B]]]

)
+εµναβ vα

{
tr
(
B̄Sβ [h+, [[Dµ, uν ], B]]

)

+tr
(
B̄Sβ [[Dµ, uν ], [h+, B]]

)}]

+
1
◦
m

g5

[
i
2

tr
(
B̄[h+, {[Dµ, uµ], B}]

)
+i tr

(
B̄[h+, {uµ, [Dµ, B]]}]

)
+

i
2
tr
(
B̄{[Dµ, uµ], [h+, B]}

)
+ itr

(
B̄{uµ, [h+, [Dµ, B]]}

)
− i

2
tr
(
B̄[h+, {[v · D, v · u], B}]

)
−i tr

(
B̄[h+, {v · u, [v · D, B]}]

)
− i

2
tr
(
B̄{[v · D, v · u], [h+, B]}

)
−i tr

(
B̄{v · u, [h+, [v · D, B]]}

)
+εµναβ vα

{
tr
(
B̄Sβ [h+, {[Dµ, uν ], B}]

)

+tr
(
B̄Sβ{[Dµ, uν ], [h+, B]}

)}]

+
1
◦
m

g7

[
i
2

tr
(
B̄{h+, [[Dµ, uµ], B]}

)
+i tr

(
B̄{h+, [uµ, [Dµ, B]]}

)
+

i
2
tr
(
B̄[[Dµ, uµ], {h+, B}]

)
+ itr

(
B̄[uµ, {h+, [Dµ, B]}]

)
− i

2
tr
(
B̄{h+, [[v · D, v · u], B]}

)
−i tr

(
B̄{h+, [v · u, [v · D, B]]}

)
− i

2
tr
(
B̄[[v · D, v · u], {h+, B}]

)
−i tr

(
B̄[v · u, {h+, [v · D, B]}]

)
+εµναβ vα

{
tr
(
B̄Sβ{h+, [[Dµ, uν ], B]}

)
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+tr
(
B̄Sβ [[Dµ, uν ], {h+, B}]

)}]

+
1
◦
m

g8

[
i
2
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+
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)



B. Borasoy, Barry R. Holstein: Non-leptonic hyperon decays in chiral perturbation theory 101
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(B.10)

We have not absorbed some of the relativistic corrections
into LW (2,br)

φB or the O
(2)
i .

Finally, the strong meson-baryon Lagrangian reads

LφB=L(1)
φB + L(2)

φB + L(3)
φB (B.11)
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(B.12)
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(B.13)

L(3)
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φB +
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φB (B.14)
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(B.15)

The last three terms renormalize the momentum depen-
dent divergences of the self–energy diagrams and, there-
fore, contribute to the Z-factors, see Appendix C.

∑
i
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(3)
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(B.16)
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(B.17)

C Z-factors

In this appendix we display explicit expressions for the
Z-factors and the chiral correction at next order to the
pseudoscalar decay constant.
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(
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(
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(
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(C.1)
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where the Lr
i have been defined in [6], Λχ = 4πFπ and

the xr
i represent the finite remainders of the LECs of the

following Lagrangian after renormalizing the momentum
dependent divergences of the sel–energy diagrams

L=i
[
xr

1 +
3L
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π
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(C.2)

+i
[
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3 − 3L

2F 2
π

(13
9

D2 + F 2)]tr(B̄[v · D, B]
)
tr
(
χ+

)

Here, we set xr
i = 0. Furthermore, one has to account for

the contributions of the heavy components of the external
baryons to their Z-factors, see [25]. In the rest frame of
the heavy baryon they vanish for the decaying baryon. For
the light baryon with the mass mB we get a term which
is to lowest order M2

π/(4m2
B). This factor has been added

to ZN and ZΛ. In the case of ZΛ it has to be neglected for
the decay Λ → pπ−.

Finally, δFπ is defined via

Fπ =
◦
F (1 + δFπ) (C.3)

with
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(C.4)

For Lr
4 and Lr

5 we use the central values of Bijnens et al.
in [18].

D P-wave amplitudes

In this appendix we present the expressions for the coeffi-
cients of the p-wave amplitudes.
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γ
(p) K
Σ+n =

1
mΣ − mN

11
6

(d − f)(D + F ) +
1

mΛ − EN

11
18

×D (d + 3f) − 1
mΣ − EN

11
6

F (d − f)

+
1

mΣ − mN

(
d

[
16
3

D3 − 4
3
D2F − 4DF 2 + 8F 3

]

+f

[
−4

3
D3 +

28
3

D2F + 8DF 2 − 8F 3
])

+
1

mΛ − EN

(
d

[
−4

3
D3 + 6D2F +

10
3

DF 2
]

+f

[
6D2F +

10
2

DF 2
])

+
1

mΣ − EN

(
d
[−6D2F + 2DF 2 − 4F 3]

+f
[
2D2F − 6DF 2 + 4F 3])

γ
(p) η
Σ+n=

1
mΣ − mN

3
4
(d − f)(D + F ) +

1
mΛ − EN

1
4

×D (d + 3f) − 1
mΣ − EN

3
4
F (d − f)

+
1

mΣ − mN
(d − f)(D + F )

(
5
3
D2 − 7DF + 6F 2

)

+
1

mΛ − EN
(d + 3f)

(
1
9
D3 + D2F

)

+
1

mΣ − EN
(d − f)

(
−11

3
D2F + 3DF 2

)

ε
(p)
Σ+n=−8g11 − 8g13 + 8g15 + 4g16

δ
(p)
Σ+n=− 1

mΣ − mN
(D + F ) (d − f)

− 1
mΛ − EN

1
3
D (d + 3f)

+
1

mΣ − EN
F (d − f)

ρ
(p)
Σ+n=−q2 − (EN− ◦

m)2

(mΛ − EN )2
1
3
D (d + 3f)

+
q2 − (EN− ◦

m)2

(mΣ − EN )2
F (d − f) (D.1)

The momentum of the outgoing baryon squared q2 can
be expressed in terms of the physical masses. However, we
retain the notation q2 for simplicity.
The coefficients for the other three decays read

α
(p)
Σ−n=− 1

mΣ − EN
2 F (d − f) − 1

mΛ − EN

2
3

D (d + 3f)

β
(p) π
Σ−n=

1
mΛ − EN

8
(

−h3 +
1
3
h5 − 1

3
h7 +

2
3
h8

)
D

+
1

mΣ − EN
8
(
h3 + h5 − h7

)
F

+
1

Λ2
χ

1
mΛ − EN

(
d

[
34
9

D3 + 2D2F − 8
3
DF 2

]

+f

[
10
3

D3 + 2D2F − 8DF 2
])

+
1

Λ2
χ

1
mΣ − EN

(
d

[
−2

3
D2F − 10

3
DF 2 + 8F 3

]

+f

[
10
3

D2F + 6DF 2 − 8F 3
])

β
(p) K
Σ−n =− 1

mΛ − EN
8
(

−h3 +
7
3
h5 − 1

3
h7 +

2
3
h8

)
D

− 1
mΣ − EN

8
(
h3 − h5 − h7

)
F

+
1

Λ2
χ

1
mΛ − EN

(
d

[
−4

3
D3 + 4D2F +

8
3
DF 2

]

+f

[
−4

3
D3 + 4D2F + 8DF 2

])

− 1
Λ2

χ

1
mΣ − EN

(
d

[
−8

3
D2F +

4
3
DF 2 − 4F 3

]
+f
[−4DF 2 + 4F 3])

β
(p) η
Σ−n=

1
Λ2

χ

1
mΛ − EN

(
d

[
−2

9
D3 +

2
3
D2F

]

+f

[
−2

3
D3 + 2D2F

])

+
1

Λ2
χ

1
mΣ − EN

(
d

[
10
3

D2F − 2DF 2
]

+f

[
−10

3
D2F + 2DF 2

])

γ
(p) π
Σ−n=

1
mΛ − EN

17
36

D(d + 3f) +
1

mΣ − EN

17
12

F (d − f)

+
1

mΛ − EN

(
d

[
47
9

D3 + 3D2F − 4
3
DF 2

]

+f

[
11
3

D3 − 3D2F − 4DF 2
])

+
1

mΣ − EN

(
d

[
5
3
D2F − 5DF 2 + 8F 3

]

+f

[
7
3
D2F + 9DF 2 − 8F 3

])

γ
(p) K
Σ−n =

1
mΛ − EN

11
18

D (d + 3f) +
1

mΣ − EN

11
6

F (d − f)

+
1

mΛ − EN

(
d

[
−4

3
D3 + 6D2F +

10
3

DF 2
]

+f
[
6D2F + 10DF 2])

+
1

mΣ − EN

(
d
[
+6D2F − 2DF 2 + 4F 3]

+f
[−2D2F + 6DF 2 − 4F 3])

γ
(p) η
Σ−n=

1
mΛ − EN

1
4
D (d + 3f) +

1
mΣ − EN

3
4
F (d − f)

+
1

mΛ − EN
(d + 3f)

(
1
9
D3 + D2F

)
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+
1

mΣ − EN
(d − f)

(
11
3

D2F − 3DF 2
)

ε
(p)
Σ−n=4g11 − 4g13 + 4g15

δ
(p)
Σ−n=− 1

mΛ − EN

1
3
D (d + 3f) − 1

mΣ − EN
F (d − f)

ρ
(p)
Σ−n=−q2 − (EN− ◦

m)2

(mΛ − EN )2
1
3
D (d + 3f)

−q2 − (EN− ◦
m)2

(mΣ − EN )2
F (d − f)

φ
(p)
Σ−n=D − F (D.2)

α
(p)
Λp

=
1

mΛ − mN

2√
6
(d + 3f)(D + F )

+
1

mΣ − EN

4√
6

D (d − f)

β
(p) π
Λp

= − 1
mΛ − mN

16√
6

(
−3

2
h3 +

1
2
h5 − 1

2
h7 + h8

)
(D + F )

+
1

mΣ − EN

16√
6

(
− h3 − h5 + h7

)
D

+
1

Λ2
χ

1
mΛ − mN

2√
6
(D + F )2

(
d(−4D − F ) + 6f F

)

+
1

Λ2
χ

1
mΣ − EN

1√
6

(
d

[
−20

3
D3 +

20
3

D2F + 8DF 2
]

+f

[
4
3
D3 − 12D2F − 8DF 2

])

β
(p) K
Λp

=
1

mΛ − mN

16√
6

(
−3

2
h3 +

7
2
h5 − 1

2
h7 + h8

)
(D + F )

− 1
mΣ − EN

16√
6

(−h3 + h5 + h7) D +
1

Λ2
χ

× 1
mΛ − mN

2√
6

(
d

[
2
3
D3 − 14

3
D2F − 2DF 2 − 2F 3

]
+f
[−2D3 − 6D2F + 6DF 2 − 6F 3])

+
1

Λ2
χ

1
mΣ − EN

2√
6

(
d

[
−8

3
D3 +

4
3
D2F − 4DF 2

]
+f
[−4D2F + 4DF 2])

β
(p) η
Λp

=
1

Λ2
χ

1
mΛ − mN

2√
6

(d + 3f)(D + F )(D − 3F )F

− 1
Λ2

χ

1
mΣ − EN

4
3
√

6
(d − f)D2(D − 3F )

γ
(p) π
Λp

= − 1
mΛ − mN

1√
6

17
12

(d + 3f)(D + F )

− 1
mΣ − EN

1√
6

17
6

D (d − f) − 1
mΛ − mN

1√
6

×(D + F )2
(
d(13D + 4F ) + f(3D + 12F )

)
+

1
mΣ − EN

1√
6

(
d

[
−22

3
D3 + 10D2F − 4DF 2

]

+f

[
−2

3
D3 − 18D2F + 4DF 2

])

γ
(p) K
Λp

= − 1
mΛ − mN

1√
6

11
6

(D + F ) (d + 3f)

− 1
mΣ − EN

1√
6

11
3

D (d − f)

− 1
mΛ − mN

(
d

[
−2

3
D3 +

38
3

D2F + 10DF 2 + 2F 3
]

+f
[
10D3 − 14D2F − 6DF 2 + 6F 3])

+
1

mΣ − EN

1√
6

(
d
[− 12D3 + 4D2F − 8DF 2]

+f
[
4D3 − 12D2F + 8DF 2])

γ
(p) η
Λp

= − 1
mΛ − EN

1√
6

3
4
(D + F ) (d + 3f)

− 1
mΣ − EN

1√
6

3
2
D (d − f)

+
1

mΛ − mN

1√
6
(d + 3f)(D − 3F )(D + F )(

1
3
D + 2F )

− 1
mΣ − EN

1√
6
(d − f)2D2

( 7
3
D − 3F

)
ε
(p)
Λp =

1√
6

(
− 12g11 − 20g13 − 4g15

)
δ
(p)
Λp

=
1

mΛ − EN

1√
6
(D + F ) (d + 3f)

+
1

mΣ − EN
2D (d − f)

ρ
(p)
Λp =

1√
6

q2 − (EN− ◦
m)2

(mΣ − EN )2
2D (d − f)

φ
(p)
Λp = − 1√

6

(
D + 3F

)
(D.3)

α
(p)
Ξ−Λ

= − 1
mΞ − EΛ

2√
6
(d − 3f)(D − F )

− 1
mΞ − mΣ

4√
6

D (d + f)

β
(p) π
Ξ−Λ

=
1

mΞ − EΛ

16√
6

(
−3

2
h3 − 1

2
h5 +

1
2
h7 + h8

)
(D − F )
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− 1
mΞ − mΣ

16√
6

(
− h3 + h5 − h7

)
D

+
1

Λ2
χ

1
mΞ − EΛ

1√
6

(
d
[
8D3 − 18D2F + 12DF 2 − 2F 3]

+f
[
6D2F − 12DF 2 + 6F 3])

+
1

Λ2
χ

1
mΞ − mΣ

1√
6

(
d

[
20
3

D3 +
20
3

D2F − 8DF 2
]

+f

[
4
3
D3 + 12D2F − 8DF 2

])

β
(p) K
Ξ−Λ

= − 1
mΞ − EΛ

16√
6

(
−3

2
h3 − 7

2
h5 +

1
2
h7 + h8

)
(D − F )

+
1

mΞ − mΣ

16√
6

(
− h3 − h5 − h7

)
D +

1
Λ2

χ

× 1
mΞ − EΛ

1√
6

(
d

[
−4

3
D3 − 28

3
D2F + 4DF 2 − 4F 3

]
+f
[−4D3 + 12D2F + 12DF 2 + 12F 3])

+
1

Λ2
χ

1
mΞ − mΣ

1√
6

(
d

[
16
3

D3 +
8
3
D2F + 8DF 2

]
+f
[
8D2F + 8DF 2])

β
(p) η
Ξ−Λ

=
1

Λ2
χ

1
mΞ − EΛ

2√
6

(d − 3f)(D − F )(D + 3F )F

+
1

Λ2
χ

1
mΞ − mΣ

4
3
√

6
(d + f)D2(D + 3F )

γ
(p) π
Ξ−Λ

=
1

mΞ − EΛ

1√
6

17
12

(d − 3f)(D − F )

+
1

mΞ − mΣ

1√
6

17
6

D (d − f)
1

mΞ − EΛ

1√
6
(D − F )2

× (d(13D − 4F ) − f (3D − 12F ))

+
1

mΞ − mΣ

1√
6

(
d

[
22
3

D3 + 10D2F + 4DF 2
]

+f

[
−2

3
D3 + 18D2F + 4DF 2

])

γ
(p) K
Ξ−Λ

=
1

mΞ − EΛ

1√
6

11
6

(D − F ) (d − 3f)

+
1

mΞ − mΣ

1√
6

11
3

D (d + f)

+
1

mΞ − EΛ

(
d

[
−2

3
D3 − 38

3
D2F + 10DF 2 − 2F 3

]
+f
[−10D3 − 14D2F + 6DF 2 + 6F 3])

+
1

mΞ − mΣ

1√
6

(
d
[
12D3 + 4D2F + 8DF 2]

+f
[
4D3 + 12D2F + 8DF 2])

γ
(p) η
Ξ−Λ

=
1

mΞ − EΛ

1√
6

3
4
(D − F )(d − 3f)

+
1

mΞ − mΣ

1√
6

3
2
D(d + f)

− 1
mΞ − EΛ

1√
6
(d − 3f)(D + 3F )(D − F )(

1
3
D − 2F )

+
1

mΞ − mΣ

1√
6
(d + f)2D2

( 7
3
D + 3F

)
ε
(p)
Ξ−Λ =

1√
6

(
− 12g11 + 20g13 + 4g15

)
δ
(p)
Ξ−Λ = − 1

mΞ − EΛ

1√
6
(D − F ) (d − 3f)

− 1
mΞ − mΣ

2D (d + f)

ρ
(p)
Ξ−Λ = − 1√

6
q2 − (EΛ− ◦

m)2

(mΞ − EΛ)2
(D − F ) (d − 3f)

φ
(p)
Ξ−Λ = − 1√

6

(
D − 3F

)
(D.4)
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